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Correlation diagrams for the lowest electronic states of the systems (LiH) 3 +, (Hell) ++, (Lille) 4+, 
H~, (He, -1) ,  and (H, - 1 ) -  (finite dipole with one electron) have been computed exactly and are 
discussed with special regard to the non-crossing rule and to the asymptotic behaviour of generalized 
diatomic orbitals. 

Korrelationsdiagramme ffir die tiefsten elektronischen Zust~inde der Systeme (LiH) 3 +, (Hell) ++, 
(Lille) 4+, H~, (He, - 1) und (H, - 1)- (endlicher Dipol mit einem Elektron) wurden exakt berechnet 
und werden im Hinblick auf die Nichtiiberschneidungsregel und auf das asymptotische Verhalten 
verallgemeinerter zweiatomiger Bahnfunktionen diskutiert. 

On a calcul6 exactement les diagrammes de corr61ation pour les plus bas 6tats 61ectroniques 
des syst6mes (LiH) 3+, (Hell) ++, (Lille) 4+, H +, (He, - 1) et (H, - 1) (dipole fini/t 1 ~lectron). La discussion 
porte plus sp6cialement sur la loi de non-intersection et sur le comportement asymptotique des orbitales 
diatomiques g6n~ralis6es. 

A. Introduction 

Since the early work of Teller [1], Hylleraas [-21, Jaff6 [3], and Baber and 
Hass6 [41 it has been known that the one-electron two-centre problem 

- - e  

2 rt 772 z = E z  (1) 

Zle R Z2e 
is separable in prolate spheroidal coordinates 

r l  + r 2 r~ --  r 2 
= R v -  (2) 

1 ~ # < ~  - 1 N v N 1  0 N p < 2 n  

with the charges Z1, Z 2 of distance R as foci. Later on, one-electron energies E 
and diatomic orbitals Z have been computed for various electronic states and for 
several values of R by Wallis [5] (H~, Hell++), Wallis, Herman, and Milnes [-6] 
(finite dipole), Bates, Ledsham, and Stewart [7] (H~), Bates and Carson [-8] 
(Hell++), Wind [9] (H~), Peek [10] (H2), and Hunter and Pritchard [11]. Correla- 
tion diagrams, however, which are based on exact computations and cover a large 
range of R, have apparently not been presented. 

* Dedicated to Pro[ Dr. Hermann D~inzer on occasion of his 65 th birthday on October 21 st. 
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On the other hand, several authors of quantum chemical textbooks have 
included correlation diagrams for one-electron diatomic molecules in their texts 
which are based nearly entirely on the non-crossing rule proved by Neumann 
and Wigner and on the assumption that the symmetry group of these molecules 
is Coov or, in the case of equal nuclei, D~oh. Assuming that symmetry, the energy 
curves of two states such as 2s% and 3d% of H +, which transform under Doo h 
after the same irreducible representation, are not allowed to cross. But they do 
cross, as exact calculations show, and therefore many correlation diagrams 
published are not correct. 

Quite recently Coulson and Joseph [12] have shown that systems such as H 2 
and Hel l  ++ possess an additional symmetry connected with the separability of 
their Schr6dinger equations. This symmetry gives rise to another constant of the 
motion, the eigenvalues of which are the possible values of the separation con- 
stant A'. For very small distances R, -A'  ~ l(1 + 1), where I is the angular momen- 
tum number of the corresponding united atom electronic state. As 2s%(1 = 0) and 
3da o (/= 2) belong to different eigenvalues A' of the additional constant of the 
motion, the crossing of their energy curves is not forbidden. 

In all computational results presented here, no crossing of energy curves is 
observed, the states of which transform after the same irreducible representation 
of C~v(Do~h) and simultaneously agree in the value A' of the separation constant. 
Crossing of terms belonging to the same irreducible representation of Co~v(D~h), 
but differing in the corresponding values of A', occurs quite frequently. 

B. Definition and Asymptotic Behaviour of Generalized Diatomic Orbitals 

Generalized diatomic orbitals ~ are the bound state solutions of the separable 
one-electron Schr6dinger equation 

( A Z 1 Z 2  Q )  
2 rt r2 rlr2 z=Ez'  (3) 

in which Q is a real constant independent of the coordinates of the electron. In 
some applications to diatomic molecules with several electrons, generalized 
diatomic orbitals are to serve as a one-electron basis, Z~, Z2, and Q then being 
nonlinear variation parameters. Putting 

eim~ ~ 
Z = U(#) V(v) ~ -  (m integer), (4) 

the separated form of (3) turns out to be 

m 2 
[~__(/.,/2 1) d_~+A,+2Q+R(Z1 q_Z2)]./_p2(lA2 1) u ~ l - ] U ( l A ) ~ O ,  (5a) 

( 1 - v  2)~vd _A,_R(ZI_Z2)v_pa(I_v2) 1--_) 2 V(v)=0. (5b) 

Here p is the energy parameter defined by 

p2 = _ �89 e (p > O) (6) 



Generalized Q u a n t u m  Mechanical Two-Centre Problems. I 265 

and A' is a separation constant. Both p and A' depend on the three variables R Z  1, 
RZ2, and Q; they are independent of R. 

In the limiting united atom case R ~ 0, (3) reduces to 

( A Z I + Z 2  Q ) 
2 r r2 ~p = E~p, (7) 

where r is the distance between the electron and the place of the two united 
centres with sum of charges Z~ + Z> If 

2 Q < � 8 8  and Z t + Z 2 > 0 ,  (8) 

the atomic-like one-electron Schr6dinger Eq. (7) possesses bound state solutions 
defined in spherical coordinates r, 0, ~0 and a discrete spectrum bounded from 
below (Kehl [18]). The solutions are 

eimq ~ 
tP,Zm = R,l(r) Pt ml (cos0) ~ , (9) 

where R,z is described in [18] and pl "1 is a normalized associated Legendre func- 
tion of the first kind. (7) can be specialized to be the equation for Slater-Zener type 
atomic functions, and therefore generalized diatomic orbitals (Q va 0) appear to be 
superior to ordinary ones (Q = 0) as one-electron basis functions. 

The one-electron energy E,z corresponding to the solution (9) of (7) is 

1 ( Z  1 -~ Z 2 )  2 
E.l = -- - -  (10) 

2 [ l + ~ ( % _ 2 Q ) + l ( l + l ) + n r ] 2  

where nr = n - l - 1 is the number of nodes of R,z [18]. 
A further inspection of Eqs. (5a) and (5b) shows that U(#) tends to R,t(r) and 

V(v) tends to pT'(cos 0) separately for R--* 0. Furthermore, 

- A' ~ l(1 + 1) for small R .  (11) 

In the case of separated centres R ~ 0% Eq. (3) becomes approximately either 

A Z 1 Z2 Q ] 
2 r 1 R qR/~v=E~p  (12a) 

o r  
A Z1 Z2 Q ) 
2 R r 2 R~ 2 . ~p = Eto, (12b) 

depending on whether the electron is near centre 1: r 2 ~ R o r  near centre 2: r~ ~ R. 
The electronic energy is then given by 

E'I - 2n~ R (electron near centre 1), (13a) 

E"2 - 2n~ R (electron near centre 2) (13 b) 

19 Theoret. chim. Acta (Bed.) Vol. 16 
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according to Balmer's formula, n 1 (n2) is the main quantum number of the solution 
of the hydrogenic problem (12 a) ((12 b)). 

An exact proof of Eqs. (13) which also reveals the asymptotic form of ~p, uses 
relations between prolate spheroidal coordinates #, v, ~0 and parabolic coordinates 
4, r/, q~. As usual, the latter ones are defined by 

~ = r - z  t l=r+z qg. (14) 

As a consequence, 

~ = R  R 
- f  ( /z-  1) ( 1 -  v) r /= ( # +  1)(1 +v)  q~ =r (15) 

If we now move centre 2 to infinity ( R ~  ~),  keeping centre 1 and a point P with 
parabolic coordinates ~, q, q~ fixed, we obtain after some manipulation with (15) 

lira # = 1 lim n(#  - 1) -- ~ lira R ~  2 - 1) = 24,  (16a) 
R--* oo R--+ c~ R ~  

lira v = - 1 lim R(1 + v) = q lina R(1 - v z) = 2t/.  (16b) 
R-~oo R-ooo R-ooo 

The asymptotic form of Eqs. (5 a) and (5 b) is therefore 

[~J_~ d p2 A ,+RZI+RZz+2Q)  1 m z ] 
d~ R 2 + 2R ~ 442 X ( O =  O, (17a) 

I1  d d p2 _ A , + R Z I _ R Z 2 )  t m z] 
-d--q -~/ d~/ - R - - - r +  2R q 4r/2 Y(q)=0 (17b) 

where an expression RZ1 + RZz + 2p z was approximated by 2p z and, similarly, 
RZ1-  RZ2 + 2p 2 was approximated by 2p z. 

The two Eqs. (17a) and (17b) also arise when the one-electron Kepler problem 
is treated in a parabolic coordinate system and can be solved explicitly ([13], 
p. 119). Both equations are of the form 

dxxX-dx 4 + x 4x z X ( x ) = 0  = p  (18) 

which possesses finite solutions 

X(x) = e 2 (kx) 2 L~mLl+~(kx) (withj  nodes) (19) 

if B = 1 (lm] + 1) + j  with j a non-negative integer. This condition for B implies 
Z 

in connection with (17a) that 

A' + RZ1 + RZz + 2Q 
4p 

and in connection with (17b) that 

- A '  + R Z  1 - -  R Z  2 

4p 

1 
= y ( l m L + l ) + S ;  S = 0 , 1 , 2 , . . .  (20a) 

1 
= -~--([ml + 11 + T; T = 0 ,  1,2, . . . .  (20b) 
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Combining these two equations for p and A', one obtains 

R Z t  +Q 
with n~ = S +  T +  [ml + 1, (21) P - 2nl 

(T -  S)(RZ1 + Q) 
- A' = + (RZ2 + Q). (22) 

n l  

Eq. (21) is equivalent to Balmer's formula and slightly inferior to (13 a). 
This derivation shows that generalized diatomic orbitals tend to hydrogenic 

functions as they arise when the Kepler problem is treated in parabolic coordi- 
nates, i.e. they tend to hydrogenic functions which are, for instance, the appro- 
priate basis for a study of the Stark effect of hydrogen. These functions possess 
S + T + Ira[ nodal surfaces, S of which are paraboloids of rotation open to the right 
side, whereas T surfaces are paraboloids of rotation open to the left side. 

In case of generalized diatomic systems with equal charges Z 1 = Zz(Omh), the 
generalized diatomic orbitals tend to the normalized stun or difference of two 
hydrogenic Functions (S, T, m), one concentrated on each of the two centres. Here 
it is assumed that the midpoint of the two centres is kept fixed and the centres 
are moved away preserving symmetry D~o h. 

C. Constants of  the Motion 
d 

In Eq. (5 a), we replace all differentiation operators ~ by corresponding 

partial differentiation operators _~# and multiply each side by ( 1 - v  2) V(v). 

Similarly we proceed in (5 b) and multiply by - U(/~) (#2 _ 1). Adding the left and 
the right sides of the two resulting equations we obtain m2) 

# 2 _  1 

m 2 ) (23) 
1 - v 2 

o r  

F 
[(1 - v 2)/~p- p (#2 _ 1 ) ~  + 2Q + R ( Z  1 + Z2)/~ 

- ( ~ -  1) ( 1 - v ~ ) ~ -  v - R ( z ~ - z ~ ) , v -  - -  

- v2)] u(~) v ( v )  = + A'(,u 2 0 
1 

a 'z(u ,  v, q,) = A'Z(~, v, ~o) 

with 

A t  _ _  

19" 

- 1  
1 - v 2) (#2 _ 1) ~ -  + 2Q + R ( Z  1 + Z2) # + #z V 2 

_ (ge _ 1) (1 - v 2) ~ - R ( Z  1 - Z2) v + 1 - ~ - / J "  

(24 a) 

(24b) 
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The operator A' commutes with the hamiltonian h of Eq. (3) because it has the 
very same eigenfunctions Z which h possesses. A strict proof for commutativity 
may be drawn from the work of Cordes [14] on separation theory. Furthermore, 

h 8 
A' commutes with - -  - - ,  the z-component Lz of angular momentum. Finally, 

i Oq~ 
A' is invariant against reflection at a plane containing the two centres 1 and 2 
(/t' = ~; v' = v; ~o' = 2n - ~p) and, if Z 1 = Za, against inversion (#' = kt; v' = - v; 
q; = n + q~). So the three operators h, A', and Lz form a complete set of commuting 
observables and provide a classification of the stationary states of the system. 

A comparison with the paper of Erikson and Hill [15] (their Eq. 11) shows that 

- a '  = I2 + Q(1 - cos(02 - 01)) q ~ ~  r2 (25a) 

z , ~  zdO 
where the operator ~ has the following physical significance ([15], Eq. 8) 

f2=L 2 + ~ -  - ~Tz2 +R(Z  1 cos01 - Z 2  cos02), (25b) 

L 2 is the operator of the square of angular momentum. Therefore, 

- A ' = L 2 + ~  -- A---~-Z2 + R ( Z l C O S O 1 - Z 2 c o s O 2 ) + Q ( 1 - C O S ( 0 2 - O 1 )  ) (26) 

all parts of which vanish in the limit R = 0 except L 2. 

D .  V i r i a l  T h e o r e m  

First, three operators are defined by 

t 2 = - R  2 A ( Z 1 Z z  ) R2Q 
-~- ; v 1 = - R + ; v 2 = - - -  ( 2 7 )  

F1 /'2 Yl/'2 

They are evidently independent of R when expressed in spheroidal coordinates. 
According to Eq. (3), the hamiltonian h is 

(28) 
with 

h= T + V~ + V2 

1 1 
T=--~-t~ ; V~=-~Vl ; 

so that 

1 
V2 = - ~ -  v2 (29) 

8h zl,z2,a- 2 1 2 OR R 3 I2 - ~ -  vl - - ~  v2 

1 
= ~ -  ( -  2T-- V~- 2V2). 

(30) 
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Assuming X to be an eigenfunction of the hamiltonian (28) with eigenvalue E, we 
obtain E as the expectation value of h computed with Z: 

E = (Xl h [X)- (31) 

From the Hellman-Feynman-theorem (see, for instance, 1-16]) 

3E~2 - (Z ~2 X) (32) 

and from (30) we conclude that 

zl"z2'e = X ( - 2 T -  V~ X (33) 

or 

O~R Z1,Z2,Q R = - 2 T -  V1 - 2 9 2 .  (34) 

The right hand side of this equation differs from that encountered in the usual 
description of the virial theorem for diatomic molecules by the term - 2 9 2  

.yt eway, 

( ~@~ ) ~ 1 
4 U2(#) d# .  I V2(v) dv (35) 

Z X = ~ -  i -i " 

E. Method of Computing p and A' 

The method of computation that has been used here is very similar to that 
which was earlier applied to homonuclear diatomic molecules (Z1 = Z2; Q = 0) 
and was described in [17] (Appendix 1). For U(p), the solution of (5a), a linear 
expansion in terms of associated Laguerre polynomials is assumed: 

_ ~  Iml oo 
U(#)=e  2(#2 1) 2 E [m] -- c jLj ,nwj(x  ) with x = 2 p ~  - 1). (35 a) 

j=O 

The resulting three-term recursion formula for the components of c is: 

~zjcs_ 1 + (fls + A') cj + yscj+_ 1 = 0 (36) 
with 

~z s = (j + [ml + 1) ( / -  [m]- a), 

//s = 2Q + (Iml + 1) (Ira] + o') + 2po" - 2j(j + 2p - cr), 

)/j = j(j - 1 - a), 

RZ1 + RZ 2 
o" - [ml- 1. 

2p 

For V(v), the solution of (5 b), we assume 

V(v)=e pv ~ dkPl[mr~[+k(V). (37) 
k=0 
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The resulting three-term recursion formula for the components of d is the very 
same as in the case of one-electron diatomic molecules (Q = 0) and is given in 
[-13] (page 130). 

The three-term recursion formulas are, in matrix form, 

A c = 2c,  Bd = 2d ,  (38) 

where A and B are tridiagonal matrices depending on the energy parameter Pl 
and - 2 = A' is the separation constant. 

These coupled two eigenvalue equations are solved simultaneously for p and 
2 by applying the Newton-Raphson-algorithm for two unknowns (19 and 2) to the 
system of two secular equations 

F(p, 2) - det(A (p) - )~1) = 0, 

G(p, 2) = det(B(p) - 21) = 0 
(39) 

following from (38). Recursion formulas for the evaluation of the two deter- 
OF aF 0G 0G 

minants F and G and for their four partial derivatives - -  
O p '  0 2 '  O p '  0 2 '  

which are needed for the NR-algorithm, have been given in 1-17]. Initial approxi- 
mations for p and 2 necessary for this algorithm are obtained from (10) and (11), 
for small values of R. In the later stages of computation, quadratic extrapolation 
for the initial approximatio is applied when raising the value of R. This holds for 
systems having bound electronic states in the limit R ~ 0. If there is no united 
centre system with bound states as in the case of the finite dipole, initial approxi- 
mations for p and 2 are obtained from (21) and (22), and the computing process 
is performed by stepping down from high values of R to lower ones. 

These procedures give p, A' (and of course the one-electron energy E) as func- 
tions of R over a wide range of R; within each single computation we assume 
Z1, Z2, Q and the three quantum numbers n, l, m (S, T, m) to be constants. 

F. Results for Two-Centre Coulomb Problems 

In each of the figures which will be discussed now it is assumed that 

a) Q = 0, b) Z1 > Z2 (without loss of generality), c) Z1 : Z2 = const. 

Each of the following diagrams holds for all one-electron systems (1) which fulfil 
conditions b) and c) due to the following choice of variables: E/Z~ is plotted 
against R Z  2. Because the energy parameter p depends on R Z  2 only, the ratio 
Z 1 : Z 2 being prescribed, the quantity 

2p 2 
E/Z22 = (RZz)Z 

is a function of R Z  2 alone, independent of R. 
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In order to separate the different energy curves in the diagrams better, a fictive 
quantum number n o is defined by 

/ E~ with E~ (Zl+Z2)2  Z22(1+ Z l t  2 (40) 
n o =  E 2 - 2 

Actually, it is this quantity n o that was plotted against RZ 2. 
The separated atom designation S, T, m of the states treated and the centre to 

which it refers was found by use of the asymptotic formulas (13 a) and (22) and is 
in agreement with the rules. 

a) S = n o - l - 1 ,  b) m = m  

and a more complicated rule for T given by Monroe [19] and by Marrack [20]. 

a) Z 1 : Z 2 = 3, Fig. 1. 

(LiH) 3§ belongs to this class of problems. States plotted in Table 1. 

Here, energies of states 3pa and 3da cross at about RZ 2 = lao E(4fa) and E(3sa) 
cross at about 4ao and E(4fa) and E(3pa) do so at about 5a o. 

If E +  ~ is plotted against R for (LiH) 3§ a shallow minimum is found 

near R = 6a o for 3da. 

b) Z 1 : Z2 = 2, Fig. 2. 

(Hell) § belongs to this class of problems. The computations cover a wider 
range of R and one state 4fa more than those performed by Bates and Carson [8]. 
States plotted in Table 2. 

E(2sa) and E(3da) cross at about RZ a = 4 a o. E(3pa) and E(3da) cross at about 
6 ao. Finally, E(4fa) and E(3sa) cross at about 4 ao and E(4fa) and E(3pa) do so 
at about 6 ao. E(2pa) + (Z~Za)/R has, for (Hell) ++, a shallow minimum near 4 ao, 
which has already been known [8]. 

c) Z~ : Z 2 = 3 : 2, Fig. 3. 

(Lille) 4§ belongs to this class of problems. States plotted in Table 3. 

E(2sa) and E(3da) cross at about RZz = 3.5 ao. Besides, E(3pa) and E(3da) cross 
at about RZ 2 = 2 a o. Further cross points are: 

(3sa, 4da) (3sa, 4fa) (3scr, 5ga) (3pa, 4fa) (3pa, 5ga) 
(4da, 4fo') (4da, 59a ) (3pro, 4fr 0 . 

d) Z 1 : Z 2 = 1. 

H~- belongs to this class of problems. The corresponding energy diagram has 
been given in [17]. States plotted are those with n o < 3 and 4fa, .  The relation 
between united-atom quantum numbers no, l and separated-atoms quantum 
numbers S, T is: 

S= n o - l - 1  

T = [ ~ U ~ l  ([x] = entier(x)). 
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-0.5 " " ~ f 6 "  Li+~'H+ 

-0.6 , ~ ~  

,'/ / -08  

~ ,~/2 -z, / q - z=/~= } z=  E z 
t:Z2 = 3 (LiH) 3+ 

-2--2 V q  9 

-3 n~ 

- Z, Li_.+++ H + 

- 6  
- 7  
--8- 

I I I I 210 = RZ 2 
0 5 10 15 

[ao] 

Fig. 1 

-h 

Table 1 

United atom-designation Separated atoms-designat ion 

nollml centre S T I m l  n~oa 

l sa  1 (Li) 0 0 0 

2scr 1 0 0 
2p~r 0 1 0 
2p~ 0 0 1 

3sa 2 0 0 
3pa 1 1 0 
4ftr 0 2 0 
3pro 1 0 1 
3drc 0 1 1 
3d6 0 0 2 

3da 2 (H) 0 0 0 

1 (Li ++ + H +) 

2 

3 

1 (Li +++ + H) 

a no~ = n 1 if the electron is near centre 1. 
( n  2 if the electron is near centre 2. 
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-0.3 

-O.L 

-0.5- 

-0.6 

-0.8 

-1.0 
-1.125- 

-1.5 

-2.0 
-2.5 
-3.0 
-3.5 

Z 1:Z2=2:1 (Hell) ++ 

3 ~ He++H + 
3 d ~ ~  

Y 
I I I 
0 5 10 

-q 
He+( 000)+H + 

I I . R Z  2 
15 20 

[Oo] 

Fig. 2 

Table 2 

United atom-designation Separated atoms-designation 

nollm I centre S T Ira[ n~ 

lsa  1 (He) 0 0 0 l 

2sa 1 0 0 
3de 0 1 0 2 
2pn 0 0 1 

3sa 2 0 0 
3pa 1 1 0 
4 fc  0 2 0 

3 
3pn 1 0 1 
3dn 0 1 1 
3d5 0 0 2 

2pa 2 (H) 0 0 0 1 

(He + + H +) 

(He ++ + H) 
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[e2/ao] ' no 

-0.15 5~giZl :Z2=3:2 (LiHe)Z'+ 

-o:,+ + ~ - +  

-o.25 +--I 
-0.30 

-0.Z, 

-0 .5  l"fi 

-0,g 
-I.(1 

-1.5 

- 2  

- 3  
0 5 

Li'+-+-( O00)+He ++ 

, t  + 
I0 15 

Fig. 3 

= RZ2 
20 
[ao] 

Table 3 

United atom-designation Separated atoms-designation 

notlm j centre S r tmj n~ 

lscr 1 (Li) 0 0 0 

2sr 1 0 0 
3da 0 1 0 
2pn 0 0 1 

3sa 2 0 0 
4d~r 1 1 0 
5g~ 0 2 0 
3pn 1 0 1 
4fg  0 1 t 
3d5 0 0 2 

2pa 2 (He) 0 0 0 

3p~r t 0 0 
4fo" 0 1 0 
3dTz 0 0 1 

1 (Li ++ + H e  ++) 

2 

3 

1 (Li +++ + He +) 

2 
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E/Z. 2 

-0.04 - 

-0.05 
- 3  

-0.06 

-0.07 

-0.08 

-0.125- 2 

-0.15 

-0.20 

-0,30 

- 0.50- 

-LO 

-2.0 

(2,-1} 

P~ 

h 

I I ~ ,  I 

0 5 10 
I i _  RZ 2 

15 20- 
[ao] 

Fig. 4 
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Table 4 

United atom-designation Separated atoms-designation 

nollm] centre 1 S T [mj n I (He + + ( -  1)) 

ls~r 0 0 0 1 

2scr 1 0 0 
2p~r 0 1 0 2 
2p~ 0 0 1 

3s~ 2 0 0 
3per 1 1 0 
3&r 0 2 0 

3 3p~ 1 0 1 
3dr~ 0 1 1 
3d& 0 0 2 
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Beside of the cross point between E(2sag) and E(3dao) at 4 a o mentioned in the 
introduction, a further cross point occurs between E(3pa,) and E(4fa, )  at about 
R Z  = 12 a o. 

e) The case Z1 : Zz  = 0 : 1  (H) is trivial and is only mentioned for the sake of 
completeness. Energy curves are parallels to the RZ/-axis. n o = n 2 gives T = 1 - m; 
besides S = n o - l - 1 .  The process of enlargening R Z z  is only a mathematical 
procedure equivalent to a steady change of transformation of the original basis 
{In0/m)} until the final basis is {IS T m)}. 

f) Z 1 : Z 2 = 2 : ( -  1), Fig. 4. 

Here we find He + , disturbed by one negative charge. States plotted in Table 4. 

As nl = no, T = l - Iml just as in the previous case of hydrogen (Z1 : Z2 = 0 : 1). 
E(3pa) and E(3da) cross near - R Z  2 = 2 a o. 

g) Zx : Z 2 =  1: ( -  1). 

One electron in the field of a finite dipole is representative for a class of problems 
for which no united atom problem with bound states exists. So it is natural to 
classify the states after the separated atom case and label them with S, T, m. 

E/Z 2 

- 0 . 0 0 0 5  - 

- 0 . 0 0 1 0  - 

-0 .0015  - 

OOC 

0 I 2 
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Former calculations of Wallis et al. [6] have been extended to include states 
with n I = 4 and to approach nearer to the zero energy limit with RZ2 (Fig. 5). 

The authors express their thanks to the Deutsche Forschungsgemeinschaft for financing computer 
time on the IBM 7094 and the TR 440 of the Deutsches Rechenzentrum Darmstadt and the CD 3300 
of the University of Mainz. 
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